Analyzing Chikungunya data¶
[5]:
from pysus.online_data import SINAN, parquets_to_dataframe
import pandas as pd
%pylab inline
%pylab is deprecated, use %matplotlib inline and import the required libraries.
Populating the interactive namespace from numpy and matplotlib
[3]:
casos = parquets_to_dataframe(SINAN.download('Chikungunya', 2015))
[4]:
casos = casos[casos.ID_AGRAVO=='A920']
casos.head()
[4]:
TP_NOT | ID_AGRAVO | CS_SUSPEIT | DT_NOTIFIC | SEM_NOT | NU_ANO | SG_UF_NOT | ID_MUNICIP | ID_REGIONA | DT_SIN_PRI | ... | COPAISINF | COMUNINF | DOENCA_TRA | EVOLUCAO | DT_OBITO | DT_ENCERRA | CS_FLXRET | FLXRECEBI | TP_SISTEMA | TPUNINOT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2 | A920 | 2015-09-08 | 201536 | 2015 | 29 | 292630 | 1381 | 2015-09-05 | ... | 1 | 292630 | 20151009 | 0 | 2 | 1 | |||||
1 | 2 | A920 | 2015-09-08 | 201536 | 2015 | 29 | 291360 | 1385 | 2015-08-28 | ... | 1 | 291360 | 20151228 | 0 | 2 | 1 | |||||
2 | 2 | A920 | 2015-09-08 | 201536 | 2015 | 29 | 292740 | 1380 | 2015-09-01 | ... | 0 | 20160111 | 0 | 2 | 1 | ||||||
3 | 2 | A920 | 2015-09-08 | 201536 | 2015 | 29 | 292895 | 1381 | 2015-09-04 | ... | 0 | 20151111 | 0 | 2 | 1 | ||||||
4 | 2 | A920 | 2015-09-08 | 201536 | 2015 | 29 | 292895 | 1381 | 2015-09-05 | ... | 0 | 20151111 | 0 | 2 | 1 |
5 rows × 38 columns
[6]:
casos.DT_NOTIFIC = pd.to_datetime(casos.DT_NOTIFIC)
[7]:
casos = casos.set_index('DT_NOTIFIC')
[8]:
casos.ID_AGRAVO.resample('1W').count().plot();
