Analyzing Chikungunya data

[5]:
from pysus.online_data import SINAN, parquets_to_dataframe
import pandas as pd
%pylab inline
%pylab is deprecated, use %matplotlib inline and import the required libraries.
Populating the interactive namespace from numpy and matplotlib
[3]:
casos = parquets_to_dataframe(SINAN.download('Chikungunya', 2015))
[4]:
casos = casos[casos.ID_AGRAVO=='A920']

casos.head()
[4]:
TP_NOT ID_AGRAVO CS_SUSPEIT DT_NOTIFIC SEM_NOT NU_ANO SG_UF_NOT ID_MUNICIP ID_REGIONA DT_SIN_PRI ... COPAISINF COMUNINF DOENCA_TRA EVOLUCAO DT_OBITO DT_ENCERRA CS_FLXRET FLXRECEBI TP_SISTEMA TPUNINOT
0 2 A920 2015-09-08 201536 2015 29 292630 1381 2015-09-05 ... 1 292630 20151009 0 2 1
1 2 A920 2015-09-08 201536 2015 29 291360 1385 2015-08-28 ... 1 291360 20151228 0 2 1
2 2 A920 2015-09-08 201536 2015 29 292740 1380 2015-09-01 ... 0 20160111 0 2 1
3 2 A920 2015-09-08 201536 2015 29 292895 1381 2015-09-04 ... 0 20151111 0 2 1
4 2 A920 2015-09-08 201536 2015 29 292895 1381 2015-09-05 ... 0 20151111 0 2 1

5 rows × 38 columns

[6]:
casos.DT_NOTIFIC = pd.to_datetime(casos.DT_NOTIFIC)
[7]:
casos = casos.set_index('DT_NOTIFIC')
[8]:
casos.ID_AGRAVO.resample('1W').count().plot();
_images/Chikungunya_6_0.png