Downloading data from the National Immunization program (PNI)¶
[5]:
from pysus.online_data import PNI, parquets_to_dataframe
We can start by checking the data available for a given state, for example, Rio de Janeiro:
[6]:
PNI.get_available_years('RJ')
[6]:
['1994',
'1995',
'1996',
'1997',
'1998',
'1999',
'2000',
'2001',
'2002',
'2003',
'2004',
'2005',
'2006',
'2007',
'2008',
'2009',
'2010',
'2011',
'2012',
'2013',
'2014',
'2015',
'2016',
'2017',
'2018',
'2019']
Then we can fetch data from a particular year:
[8]:
rj19 = PNI.download('RJ', 2019)
[9]:
parquets_to_dataframe(rj19)
[9]:
ANO | UF | MUNIC | IMUNO | QT_DOSE | POP | COBERT | |
---|---|---|---|---|---|---|---|
0 | 2019 | 33 | 330010 | 000 | 372 | 2628 | 14,16 |
1 | 2019 | 33 | 330010 | 003 | 341 | 2628 | 12,98 |
2 | 2019 | 33 | 330010 | 006 | 144 | 2628 | 5,48 |
3 | 2019 | 33 | 330010 | 010 | 385 | 2628 | 14,65 |
4 | 2019 | 33 | 330010 | 012 | 522 | 2628 | 19,86 |
... | ... | ... | ... | ... | ... | ... | ... |
2185 | 2019 | 33 | 330630 | 098 | 578 | 3363 | 17,19 |
2186 | 2019 | 33 | 330630 | 099 | 402 | 3363 | 11,95 |
2187 | 2019 | 33 | 330630 | 102 | 75 | 6051 | 1,24 |
2188 | 2019 | 33 | 330630 | 103 | 1597 | 0 | |
2189 | 2019 | 33 | 330630 | 3 | 3363 | ,09 |
2190 rows × 7 columns